

Railroad Embankment Slope Stabilization with Tiebacks and Micropiles

Gary Brill, PE (Schnabel Engineering),

Presentation Outline

- Background
- Existing Conditions
- Subsurface Investigation
- Global Slope Stability Analyses (Existing and Proposed)
- Structural Design of Stabilization System
- Load Testing
- Construction
- Conclusions

Problem Statement and Challenges

Problem Statement

- Site has long history of ground movement and repair attempts.
- Ground movement has resulted in repetitive maintenance.
- Recent increase in track movements prompted further stabilization measures to avoid an unsafe situation for trains.

Challenges

- Client desire to minimize railway disruptions.
- Limited available documentation on embankment construction

Boring B-2, Top of the Embankment

Boring B-3, Top of Embankment

Boring near Toe of Embankment

Profile A-A

Inclinometer Data, Cumulative Displacement vs Depth

Profile A-A, Existing Conditions

Profile A-A, Existing Conditions, Intermediate Slip Plane

Profile A-A, Bottom Stabilization System Installed

Profile A-A, Design Section

Profile A-A, Top and Bottom Stabilization System Installed

Profile A-A, Top and Bottom Stabilization System Installed, Intermediate Slip Plane,

Profile A-A, Top and Bottom Stabilization System Installed, Slip Between Systems

Profile B-B, Design Section

Stabilization Element Design Process

- Shear resistance from global slope stability analysis used to determine required shear resistance (per foot) of cap beams.
- Micropiles modeled in Ensoft's p-y analysis programs LPILE and GROUP. Soil movement from inclinometers as inputs for driving force on piles.
- Design checks
 - Pull out resistance
 - Shear capacity of micropiles (no shear capacity contribution from tiebacks)
 - Plastic soil flow between piles
- Assumed Ultimate Bond Strengths:
 - 12 psi in soil
 - 118 psi in rock

Lower System - Design Loads

- Micropiles (Compression):
 - Compression Force: 56 kip
 - Bending Moment: 175 kip-ft
 - Lateral Shear Force: 72 kip

- Tieback Anchors
 - Tension: 176 kip
 - No shear capacity from tiebacks

Lower System – Design Results

Upper System – Design Loads

- Micropiles (Compression):
 - Compression Force: 53 kip
 - Bending Moment: 118 kip-ft
 - Lateral Shear Force : 42 kip
- Micropiles (Tension)
 - Tension Froce: 40 kip
 - Bending Moment: 106 kip-ft
 - Lateral Shear Force : 37 kip

Upper System – Design Results

Load Testing Requirements

- Tieback Anchors:
 - 1 Pre-production Verification Test on a Sacrificial Anchor
 - Performance Test 5 percent of Anchors
 - Proof Test all other Anchors
 - Evaluation of rock-grout bond strength also applicable to micropiles bonded in rock (Lower System)
- Micropiles Bonded in Soil
 - 1 Pre-production Verification Test on a Sacrificial Pile
 - Applicable to Upper System only

Micropile Load Testing – Verification Test

Construction Approach

Total Construction Duration – 28 Weeks

Lower Cap

Upper Cap

Lower System - Micropile Install and Cap Forming

Lower System – Cap Beam and Tieback Install

Lower Cap Finished Product

Upper System – Tension Piles

Upper System – Compression Piles

Upper System – Cap Beam and Micropile Install

Upper System Final Product

Final Site Condition

Final Site Condition

Conclusions

- LIDAR data can be a useful in understanding site conditions and planning a subsurface investigation.
- Slope inclinometers were critical to identifying slip plane and formulating repair methods.
- The selected type of stabilization elements allowed for relatively small installation equipment which was more conducive to the site conditions and limited access.
- Communication and coordination were key to fulfilling the client's desire to keep the railroad active throughout construction and limit impacts to railroad operations.
- The A-frame stabilization system was completed in June 2022 and no signs of slope or rail movement have been reported since.